1. találat: Matematika emelt szintű érettségi, 2011. május, I. rész, 1. feladat Témakör: *Algebra (Azonosító: mme_201105_1r01f ) Hatjegyű pozitív egész számokat képezünk úgy, hogy a képzett számban szereplő számjegy annyiszor fordul elő, amekkora a számjegy. Hány ilyen hatjegyű szám képezhető? Témakör: *Kombinatorika (Azonosító: mme_201105_1r02f ) Legyen $ A = \{ x \in\mathbb{R} \sqrt{ x - 1 } \ge \sqrt{ 5 - x } \} $ és $ B = \left\{ x \in\mathbb{R} | \log_{\dfrac{ 1}{2 }} ( 2 x - 4 ) > -2 \right\} $. Adja meg az $ \left\{ A\cup B \right\} $, $\left\{ A\cap B \right\}$ , $\left\{ B \setminus A \right\}$ halmazokat! Témakör: *Algebra (Azonosító: mme_201105_1r03f ) Egy város sportklubjának 640 fős tagságát felnőttek és diákok alkotják. A tagság $ 55\% $-a sportol rendszeresen. A rendszeresen sportoló tagok számának és a sportklub teljes taglétszámnak az aránya 11 -szor akkora, mint a rendszeresen sportoló felnőttek 8 számának aránya a felnőtt klubtagok számához viszonyítva. A rendszeresen sportolók aránya a felnőtt tagságban fele akkora, mint amekkora ez az arány a diákok között. Hány felnőtt és hány diák tagja van ennek a sportklubnak? Témakör: *Kombinatorika (Azonosító: mme_201105_1r04f ) Egy gyártósoron 8 darab gép dolgozik. A gépek mindegyike, egymástól függetlenül 0,05 valószínűséggel túlmelegszik a reggeli bekapcsoláskor. Ha a munkanap kezdetén 3 vagy több gép túlmelegszik, akkor az egész gyártósor leáll. A 8 gép reggeli beindításakor bekövetkező túlmelegedések számát a binomiális elosz- lással modellezzük. a) Adja meg az eloszlás két paraméterét! Számítsa ki az eloszlás várható értékét! b) Mennyi annak a valószínűsége, hogy a reggeli munkakezdéskor egyik gép sem melegszik túl? c) Igazolja a modell alapján, hogy (négy tizedes jegyre kerekítve) 0,0058 annak a valószínűsége, hogy a gépek túlmelegedése miatt a gyártósoron leáll a termelés a munkanap kezdetekor!
|
|||||
|