Egy háromszög oldalainak hossza legyen $ a $, $ b $ és $ c $. Jelölje rendre $ t_a $ , $ t_b $, $ t_c $ az oldalegyeneseken a magasságtalppont és az oldalfelezőpont közötti távolságot. Bizonyítsuk be, hogy az $ a \cdot t_a $, $ b \cdot t_b $, $ c \cdot t_c $ szorzatok egyike egyenlő a másik kettő összegével.
 
Megoldás:
Igaz az állítás