ARANYD 2021/2022 Haladó III. kategória 1. forduló 5. feladat
(Feladat azonosítója: AD_20212022_h3k1f5f )
Témakör: *Kombinatorika

Jelölje $ f(n) $ azt a számot, ahányféleképpen az $ n $ pozitív egész felbontható – a tagok sorrendjének figyelembe vételével – pozitív páratlan számok összegére. Adjuk meg $ f(n) $-t! (Mivel az összegben a tagok sorrendje számít, az $ 5 $-nek például a $ 3 + 1 + 1 $ és az $ 1 + 3 + 1 $ különböző felbontásai. Az 5 ötféleképpen bontható fel a fenti módon, ezek: $ 5; 3 + 1 + 1; 1 + 3 + 1; 1 + 1 + 3; 1 + 1 + 1 + 1 + 1 $, így $ f (5) = 5 $.)



 

Megoldás: $ f(n) $ a Fibonacci-soroazt