Nevezzük az n pozitív egész számot "prímben gazdag" számnak, ha a prímtényezős felbontásában szereplő prímek mindegyikének négyzetével is osztható. Bizonyítsuk be, hogy végtelen sok "prímben gazdag" szomszédos számpár létezik.
Megoldás:
Igaz az állítás