A tic-tac-toe (vagy ix-ox) játékban két játékos felváltva tesz $ × $, illetve $ O $ jelet egy $ 3 \times 3 $-as táblára. Az nyer, akinek sikerül egy vonalban három azonos jelet elhelyeznie, vízszintes, függőleges vagy átlós irányban. Hány különböző olyan játékmenet létezik, amelyben $ × $ kezd, és a játszma döntetlennel végződik? (Két játékmenetet akkor tekintünk különbözőnek, ha valamelyik lépésben máshova kerül jel a két játékban.)
 
Megoldás: $ 46\,080 $