Az $ ABC $ derékszögű háromszög $ AB $ átfogójához tartozó magasságának talppontja $ T $. Az átfogón kijelöljük a $ P $ és a $ Q $ pontokat úgy, hogy $ AP = AC $ és $ BQ = BC $ legyen. Az $ AC $ befogón az $ M $, a $ BC $ befogón az $ N $ pontot úgy jelöljük ki, hogy $ CM = CT = CN $ legyen. Bizonyítsuk be, hogy a $ QPNCM $ ötszög területének és az $ ABC $ háromszög területének aránya $ 2r : R $ , ahol $ r $ az $ ABC $ háromszög beírt körének a sugara, $ R $ pedig a köré írt körének a sugara.
 
Megoldás: Igaz az állítás