Az $ ABC $ derékszögű háromszögben az $ A $ csúcsnál levő belső szög $ 30^\circ $ . A $ BC $ befogóra illeszkedő $ P $ pontból az $ AB $ átfogóra rajzolt merőleges talppontja legyen $ Q $. Határozza meg a $ \dfrac{BP}{ PC} $ arány értékét, ha a $ BPQ $ és a $ CPA $ háromszögek területei egyenlők!
 
Megoldás:
$ \dfrac{BP}{ PC}=2+2\sqrt{2} $