Legyenek x1 , x2 , ..., x2015 valós számok. Ugyanezen számok valamely y1 , y2 , ..., y2015 permutációjára teljesül, hogy 3y1 − x1 = 2x2 , 3y2 − x2 = 2x3 , ..., 3y2015 − x2015 = 2x1. Bizonyítsuk be, hogy ez csak úgy lehet, ha minden xi ugyanakkora.
 
Megoldás: -