Matematika emelt szintű érettségi, 2015. október, I. rész, 4. feladat
(Feladat azonosítója: mme_201510_1r04f )
Témakör: *Geometria (analízis, integrálszámítás, koordináta-geometria, kombinatorika,)

Két sportiskola legjobb teniszezői egyéni teniszbajnokság keretében mérték össze tudásukat. A verseny emblémáját parabolaszelet alakúra tervezték (lásd az ábrát).

 A koordináta-rendszerben készült tervrajzon a teniszlabda röppályáját jelképező $ y=4-x^2 $ egyenletű parabola, valamint az x tengely határolja a parabolaszeletet. Az emblémán látható még a teniszlabdát jelképező kör is, ennek egyenlete $ x^2+y^2-2,6y=0 $.

a) Hány százaléka a kör területe a parabolaszelet területének? A választ egészre kerekítve adja meg!

A Zöld Iskolából 8, a Piros Iskolából 10 tanuló versenyzett a bajnokságon. Mindenki mindenkivel egy mérkőzést játszott, az ugyanabba az iskolába járó tanulók is játszottak egymással. A verseny végén kiderült, hogy a Piros Iskola tanulói összesen kétszer annyi mérkőzést nyertek meg, mint a Zöld Iskola tanulói. (Teniszben döntetlen nincs.)

b) A Zöld Iskola versenyzői összesen hány olyan mérkőzést nyertek meg, amelyet a Piros Iskola valamelyik teniszezőjével játszottak?



 

Megoldás:

a) 50 %

b) 23