Matematika emelt szintű érettségi, 2016. május, II. rész, 6. feladat
(Feladat azonosítója: mme_201605_2r06f )
Témakör: *Kombinatorika (gráf, valószínűség, skatulyaelv, indirekt,)

a) Legyen G egy nyolcpontú egyszerű gráf, amelynek összesen 9 éle van. Igazolja, hogy G csúcsai között biztosan van olyan, amelynek a fokszáma legalább 3.

b) Az A, B, C, D, E, F, G, H pontok egy szabályos nyolcszög csúcsai. Megrajzoljuk a nyolcszög oldalait és átlóit. A megrajzolt szakaszok közül véletlenszerűen kiválasztunk négyet. Határozza meg annak a valószínűségét, hogy mind a négy kiválasztott szakasz az A csúcsból indul ki!

c) Nyolc sakkozó részére egyéni bajnokságot szerveznek. Hányféleképpen készíthető el az első forduló párosítása, ha ebben a fordulóban mindenki egy mérkőzést játszik? (Két párosítást különbözőnek tekintünk, ha az egyik tartalmaz olyan mérkőzést, amelyet a másik nem.)



 

Megoldás:

b) $ \dfrac{1}{585} $

c) 105