Matematika középszintű érettségi, 2014. október, II. rész, 17. feladat
(Feladat azonosítója: mmk_201410_2r17f )
Témakör: *Kombinatorika (térgeometria, kúp, kombináció, variáció)

A biliárdjáték megkezdésekor az asztalon 15 darab azonos méretű, különböző színezésű biliárdgolyót helyezünk el háromszög alakban úgy, hogy az első sorban 5 golyó legyen, a másodikban 4, a következőkben pedig 3, 2, illetve 1 golyó. (A golyók elhelyezésére vonatkozó egyéb szabályoktól tekintsünk el.)

a) Hányféleképpen lehet kiválasztani a 15-ből azt az 5 golyót, amelyet majd az első sorban helyezünk el? (Az 5 golyó sorrendjét nem vesszük figyelembe.)

b) Hányféle különböző módon lehet az első két sort kirakni, ha a 9 golyó sorrendjét is figyelembe vesszük?

Egy biliárdasztal játékterülete téglalap alakú, mérete 194 cm × 97 cm. A játékterület középpontja felett 85 cm-rel egy olyan (pontszerűnek tekinthető) lámpa van, amely fénykúpjának a nyílásszöge 100°.

c) Számítással állapítsa meg, hogy a lámpa megvilágítja-e a játékterület minden pontját!



 

Megoldás

a) 3003

b) 1 816 214 400 = 15⋅14⋅...⋅8⋅7

c) Nem világítja be